Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(22): 7032-7044, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37943257

RESUMO

Potency predictions are popular in compound design and optimization but are complicated by intrinsic limitations. Moreover, even for nonlinear methods, activity cliffs (ACs, formed by structural analogues with large potency differences) represent challenging test cases for compound potency predictions. We have devised a new test system for potency predictions, including AC compounds, that is based on partitioned matched molecular pairs (MMP) and makes it possible to monitor prediction accuracy at the level of analogue pairs with increasing potency differences. The results of systematic predictions using different machine learning and control methods on MMP-based data sets revealed increasing prediction errors when potency differences between corresponding training and test compounds increased, including large prediction errors for AC compounds. At the global level, these prediction errors were not apparent due to the statistical dominance of analogue pairs with small potency differences. Test compounds from such pairs were accurately predicted and determined the observed global prediction accuracy. Shapley value analysis, an explainable artificial intelligence approach, was applied to identify structural features determining potency predictions using different methods. The analysis revealed that numerical predictions of different regression models were determined by features that were shared by MMP partner compounds or absent in these compounds, with opposing effects. These findings provided another rationale for accurate predictions of similar potency values for structural analogues and failures in predicting the potency of AC compounds.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Relação Estrutura-Atividade
2.
Sci Rep ; 13(1): 17816, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857835

RESUMO

Compound potency predictions play a major role in computational drug discovery. Predictive methods are typically evaluated and compared in benchmark calculations that are widely applied. Previous studies have revealed intrinsic limitations of potency prediction benchmarks including very similar performance of increasingly complex machine learning methods and simple controls and narrow error margins separating machine learning from randomized predictions. However, origins of these limitations are currently unknown. We have carried out an in-depth analysis of potential reasons leading to artificial outcomes of potency predictions using different methods. Potency predictions on activity classes typically used in benchmark settings were found to be determined by compounds with intermediate potency close to median values of the compound data sets. The potency of these compounds was consistently predicted with high accuracy, without the need for learning, which dominated the results of benchmark calculations, regardless of the activity classes used. Taken together, our findings provide a clear rationale for general limitations of compound potency benchmark predictions and a basis for the design of alternative test systems for methodological comparisons.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina
3.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37111287

RESUMO

Predicting compound potency is a major task in computational medicinal chemistry, for which machine learning is often applied. This study systematically predicted compound potency values for 367 target-based compound activity classes from medicinal chemistry using a preferred machine learning approach and simple control methods. The predictions produced unexpectedly similar results for different classes and comparably high accuracy for machine learning and simple control models. Based on these findings, the influence of different data set modifications on relative prediction accuracies was explored, including potency range balancing, removal of nearest neighbors, and analog series-based compound partitioning. The predictions were surprisingly resistant to these modifications, leading to only small error margin increases. These findings also show that conventional benchmark settings are unsuitable for directly comparing potency prediction methods.

4.
Biomolecules ; 13(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830761

RESUMO

Prediction of the potency of bioactive compounds generally relies on linear or nonlinear quantitative structure-activity relationship (QSAR) models. Nonlinear models are generated using machine learning methods. We introduce a novel approach for potency prediction that depends on a newly designed molecular fingerprint (FP) representation. This structure-potency fingerprint (SPFP) combines different modules accounting for the structural features of active compounds and their potency values in a single bit string, hence unifying structure and potency representation. This encoding enables the derivation of a conditional variational autoencoder (CVAE) using SPFPs of training compounds and apply the model to predict the SPFP potency module of test compounds using only their structure module as input. The SPFP-CVAE approach correctly predicts the potency values of compounds belonging to different activity classes with an accuracy comparable to support vector regression (SVR), representing the state-of-the-art in the field. In addition, highly potent compounds are predicted with very similar accuracy as SVR and deep neural networks.


Assuntos
Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade , Aprendizado de Máquina
5.
Molecules ; 27(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35408730

RESUMO

Fingerprint (FP) representations of chemical structure continue to be one of the most widely used types of molecular descriptors in chemoinformatics and computational medicinal chemistry. One often distinguishes between two- and three-dimensional (2D and 3D) FPs depending on whether they are derived from molecular graphs or conformations, respectively. Primary application areas for FPs include similarity searching and compound classification via machine learning, especially for hit identification. For these applications, 2D FPs are particularly popular, given their robustness and for the most part comparable (or better) performance to 3D FPs. While a variety of FP prototypes has been designed and evaluated during earlier times of chemoinformatics research, new developments have been rare over the past decade. At least in part, this has been due to the situation that topological (atom environment) FPs derived from molecular graphs have evolved as a gold standard in the field. We were interested in exploring the question of whether the amount of structural information captured by state-of-the-art 2D FPs is indeed required for effective similarity searching and compound classification or whether accounting for fewer structural features might be sufficient. Therefore, pursuing a "structural minimalist" approach, we designed and implemented a new 2D FP based upon ring and substituent fragments obtained by systematically decomposing large numbers of compounds from medicinal chemistry. The resulting FP termed core-substituent FP (CSFP) captures much smaller numbers of structural features than state-of-the-art 2D FPs. However, CSFP achieves high performance in similarity searching and machine learning, demonstrating that less structural information is required for establishing molecular similarity relationships than is often believed. Given its high performance and chemical tangibility, CSFP is also relevant for practical applications in medicinal chemistry.


Assuntos
Química Computacional , Aprendizado de Máquina , Química Farmacêutica , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...